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Feature Selection for troubleshooting
in complex assembly lines

Tobias Pfingsten, Daniel J.L. Herrmann, Thomas Schnitzler, Andreas Feustel, and Bernhard Scholkopf

Abstract— The final properties of sophisticated products can

be affected by many unapparent dependencies within the manu-
facturing process, and the products’ integrity can often only be
checked in a final measurement. Troubleshooting can therefore
be very tedious if not impossible in large assembly lines.
In this paper we show that Feature Selection is an efficient tool for
serial-grouped lines to reveal causes for irregularities in product
attributes. We compare the performance of several methods for
Feature Selection on real-world problems in mass-production of
semiconductor devices.

Note to Practitioners— We present a data based procedure
to localize flaws in large production lines: using the results of
final quality inspections and information about which machines
processed which batches, we are able to identify machines which
cause low yield.

Index Terms— Feature Selection, production chain, SVM.

I. INTRODUCTION

On the following pages we describe how Feature Selection
can be used as a tool to detect conspicuous processes in
complex manufacturing lines. Our work was inspired by the
situation given in a plant for semiconductor products, but
applies as well to other computer—integrated assembly lines.
In the manufacturing process of semiconductor products one
deals with a great number of production steps that involve
many different machines. Malfunctions can usually not be
ruled out or identified in each processing step, and the ac-
tual quality of the product can only be evaluated in a final
measurement.

A well known technique for fault detection is the so-called
Taguchi method that uses orthogonal designs to effectively
test complex systems [1]]. In contrast to this experimental
approach, which makes it necessary to launch test runs, we
propose to use existing data from serial production by applying
Feature Selection which has proven to be highly effective
in new scientific fields such as bioinformatics [2]. Many
previous works report on the use of Data Mining methods to
analyze industrial data. Refer to [3], [4], [5] for recent review
articles on fault detection. In contrast to our approach, previous
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Fig. 1. Schematic view on how lots are handled during production. Each

lot passes K stages with several parallel machines. After production lots are
analyzed in a final test stage. Note that machines can be used in several stages.

works model specific processes to detect errors. In [6], for
example, decision trees and neural nets are used to improve
a cleaning process, in [[7] Feature Selection is used to relate
high dimensional electrical measurements to the yield. Our
approach is novel in that it concentrates on the assembly line
as a whole rather than building models for single processes.

In the examples which we shall describe later on, as many
as 357 machines are used in 403 production stages. When
final measurements show that some lots suffer from low yield
due to previously unseen errors, one can suspect that one or
more processes are subject to a disorder. Besides the results
of the final measurements, we have access to the record of
which machine handled which lot in each step. Our approach
combines lot history and test results to locate dysfunctions
which have not been captured by existing process control.
While it can be hard to find causes for irregularities manually,
located errors can be corrected systematically in little time.

We solve the task by treating the situation described above
as a classification problem. High dimensional input vectors
describe the history of each lot, while the targets are binary
labels which divide the lots into regular and conspicuous ones.
Feature Selection algorithms are designed to uncover combina-
tions of variables which are related to the classification target.
In our procedure we use these algorithms to find combinations
of machines which are related to the irregularity.

We start with Section [[I] by describing the problem, the
available data and its preprocessing. The processed data is
analyzed with different methods for Feature Selection, which
we introduce in Section In Section we present results
on data from our shop floor to demonstrate the effectiveness
of the proposed approach and to give an instruction on how to
use the methods in practice. We give a summary of the results
in Section [Vl

II. PROBLEM SETUP AND PREPROCESSING

When thinking of assembly lines, one usually has in mind
a serial configuration of single machines that manipulate
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products in a given order. In complex manufacturing envi-
ronments one often uses serial-group configurations instead—
as shown in Figure [Il—to optimize the throughput [§]]. This
design provides a group of machines for every stage, and lots
can take different paths while being processed. Note that in
semiconductor manufacturing machines can typically be used
in several stages. The propagation of variation in serial-group
lines is analyzed in [9].

Assume each lot passes K production stages and in each
stage it can be handled by one of n; machines. Computer-
integrated production provides records of the so-called lot
history—the information which machines has handled which
batch—and the results of final measurements. We link these
different types of data to locate flawed machines, and approach
the root cause detection by analyzing the assembly line as a
whole. In contrast, previous methods model specific processes
to detect errors, for example by relating the yield to process
parameters [7], [[6]. Process models can be used to monitor
unmeasurable parameters [4] and thus for fast error detection.
However, when process flaws are rare, it is hard to use such
models for troubleshooting [5]]. Our approach directly relates
observed errors to possible root causes without attempting to
model the underlying processes. The lot history can be coded
as a vector

X:($1,$27...$D) (1)

in many different ways. A straightforward coding is to use one
dimension for each stage and to assign some number to each
machine. This coding, however, introduces an order within
the sets of machines which does not reflect the structure of
the underlying process. Instead, we construct a vector with
one dimension for each possible combination of stage and
machine by setting the corresponding value to one if the lot has
passed the combination and to zero otherwise. Accordingly,
the dimension D of this input vector is

K
D=> ny, )
j=1

and each dimension of the input vectors x directly corresponds
to a certain machine being used in one particular stage. If we
expect that a combination of some machines—no matter in
what stages—causes the observed failures, we can add such
features to the input vectors. We would have one additional
dimension per machine, which is set to one when the machines
was used in any process and to zero otherwise.

The term feature or variable refers to single entries
1, T3, ...xp which make up the lot history. Note that the di-
mension of the constructed input vector is quite large—in our
examples from mass production we dealt with approximately
2000 features. However, a great advantage of this way of
coding the lot history is that each feature directly corresponds
to a localization in the process flow as shown in Figure
Features that are chosen by some extractor have a direct
interpretation in terms of what happens during production.

After passing the production line, all units are tested in a
final inspection and it is only at that point that one knows
for sure whether they meet the quality requirements. A small
fraction of units always fails in processes as complex as those

used for semiconductor devices. Dysfunctions in the produc-
tion line may be detected through an exceptionally low yield or
the appearance of certain errors. We use those characteristics
to identify “regular” (y, = 0) and “conspicuous” (y, = 1) lots
and collect the grouping of all N lots in a vector

y = (y1,92,-..yn) € {0, 1}V . 3)

How regularity is to be defined strongly depends on the type of
product. For semiconductor devices the occurrence of patterns
on wafers is an excellent criterion (see Section [[V-A).

III. FEATURE SELECTION

In recent years Feature Selection has received a lot of
interest, since many real-world problems involve a large
number of variables. In prominent research areas such as
text categorization [10] or bioinformatics [2] one is faced
with up to a hundred thousand features. The aim of selecting
informative variables—or combinations of those—can be to
construct powerful predictors or to improve the understanding
of the data itself. For reviews on Feature Selection please refer
to [[11]] and [[12]]. All approaches for Feature Selection can be
divided into the following two parts:

« Rank subsets of features by some measure for the infor-
mation about the target.

o Choose a subset of features, which obtains a good ranking
score, and use it to train a predictor.

When combining some kind of Feature Selection with a
predictor (such as SVMs, Neural Nets or Decision Trees) one
can think of three possible constructions (see [[13[] and [14]).
Wrapper approaches use the predictions of the induction
algorithm itself to do the selection, while filter approaches
do Feature Selection separately from induction. Embedded
methods make use of the complete specification of a certain
predictor rather than using it as an exchangeable “black box”.

Wrappers and embedded methods optimize the predictive
performance of an induction algorithm, but they can be com-
putationally very demanding. As we use Feature Selection to
identify irregularities in the production line, we are not really
interested in predicting the products’ quality, but a sensible
feature ranking. Therefore we choose the computationally
simpler filter methods and use the classifier only after the
ranking to validate the results of the ranking procedure.

When adapting Feature Selection methods for the presented
setup, we have to take into account the following peculiarity
of our data: While most methods assume a balanced ratio of
target labels, a serial production is usually not error-prone and
we expect only a small fraction of examples to show flaws.
Therefore the definition of the classifier has to reflect that
target values of zero dominate.

A. Feature ranking

As pointed out, we choose a filter approach to rank and
extract informative features. Filters estimate the information
content of features independently of a classifier, and are
therefore computationally attractive and comparably easy to
implement.
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A standard criterion to rank single features is the Fisher
Score (FS) ( )2
gy — K50

FS(j) =
o) T %50

with p;(1/0) denoting the mean and o? 1,0y the variance of
feature j for all examples with target 1/0. The Fisher Score
can be calculated for both, binary and continuous features.

Another univariate ranking criterion is the Mutual Informa-
tion (MI) between single features = and the target y

I(z;y) = H(z) + H(y) — H(z,y) ()

—H denoting the entropy—which we estimate by its empirical
counterpart. We can normalize the MI by dividing it by the
entropy H(y), making values range between zero (completely
uninformative) and one (complete dependence). As the target
and input vectors are binary, we can compute all quantities
without further approximations.

The univariate measures, FS and MI, have two major
drawbacks. First, correlations between features cannot be cap-
tured and thus several equivalent features might be selected.
Second, effects which are caused by a combination of features
can only be found via their independent contributions. A
greedy search as proposed in [[15], called Conditional Mutual
Information (CMI) criterion, solves both problems. Based on
the MI criterion, the CMI constructs a set of features by
adding features which are informative in combination with
the previous selection:

1) Choose the first feature to be

v(1) = argmax { I(y;x,) } . (6)
ne{l..K}
The first selected feature is the one that carries maximal
information about the target.
2) Choose the [+1% feature to be

v(l+1) = argmax {I(y; wplzy (1)
ne{l...

r,af. (D)

The feature z,(41), which we add to the subset
Ty(1) - - - Tu(1), is the one with maximal MI with the
target, given the set which is already selected. For
reasonably sized data sets this quantity cannot be eval-
vated for computational reasons and we resort to a
greedy approximation, which replaces the argument by
the minimal MI given any feature from the subset:

v(l4+1) ~ argmax{ mln[I(y, Tplrymy) o (8)
nel.. Kk m<l

B. Validation

In a setup which is comparable to ours, [2] compares
various classifiers in combination with two Feature Selection
criteria. It is shown that different classifiers vary greatly in
their predictive performance. In the end we are interested in
how to find subsets of features which are related to the target,
rather than in the absolute predictive performance of certain
classifiers. Hence we restrict ourselves to the widely used C-
SVM classifier and compare different ranking criteria.
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Fig. 2. Artificial examples for pass/fail wafermaps showing areas of high
failure rates that form a suspicious cloverleaf-like pattern (left) and randomly
distributed errors for comparison (right).

The weighted C-SVM uses the loss function

L(w, €)= f||w||2+0 aY &G+ &Gl ©

43y =1 49 =0
where we choose the weighting parameters
#ly = 0] #ly = 1]
c = and co = . (10)
LT #D) T #D

The loss function directly corresponds to unbalanced classes,
by making the loss for incorrect classification of the two
groups independent of their respective sizes.
We choose a Gaussian kernel function k(u, v) = exp{—7|u—
v|?} and do an extra 10 fold Cross Validation (CV) on
each training set to determine the parameters v and C using
LIBSVM [16]. There is a vast literature on SVMs and we refer
the reader to e.g. [17] or [18] for details.

Corresponding to the loss function in (I0) we use the
“balanced score” by [2f] to rate predictions:

Ll#ly=9=1} #y=9=0}
21 #Hy=1 #{y = 0}
The score function uses a weighting that assigns equal mass to
correct classification of both groups, as we divide the number
of correct predictions by the number of test cases which
actually belong to the corresponding class. If, say, one class
is perfectly predicted while nothing is known about the other,
we obtain a score of roughly %. Our test scores are obtained
using a 10-fold CV scheme. Note that we exclude the test set
both during the ranking and the training of the classifier to
avoid over-fitting.

Score(y, §) = . (1D

IV. EVALUATION AND PRACTICAL USE

In the following we describe in detail how the above
methods can be used to locate flaws, and we assess their
performance on real-world data sets. We present two examples,

Name | # stages | # machines | # features | # lots tot. | # class 1
PC1 403 357 1896 112 41
PC2 355 331 1758 98 28
YCI 157 142 779 870 11
YC2 339 391 2104 261 37

TABLE I

USED DATA SETS FROM MASS PRODUCTION OF DIFFERENT PRODUCTS.
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Fig. 3. Scores for data sets PC2 (top) and YCI (bottom). The feature ranking

(left) measures how well combinations of stages and machines correlate with
the grouping into good and flawed lots. For these data sets all measures extract
very clearly that one combination is responsible for the flaws, #288 for PC2
and #2AS5 for YCI. The validation scores (right) show that the grouping could
be understood to great extend with the top ranked feature only.

where we identify conspicuous lots using occurrences of
patterns on wafers, and two where we use unusually low yield.
Table [ summarizes details of the data sets. All examples rep-
resent data which have been recorded during mass production
in our plant.

A. Finding conspicuous lots

Recall the notation introduced in Section where we
collected the lot history in a vector x (I) and a grouping of
N conspicuous and flawless lots in a vector y (3). While the
lot history is automatically recorded, the grouping is done on
the basis of final measurements.

For semiconductor products, patterns which appear on so
called wafermaps are a good indicator for specific flaws in
the production line. Semiconductor products are fabricated and
tested as batches on discs, called wafers, and wafermaps are
obtained by arranging test results of single units according
to the position they have on those wafers—see Figure [2| for
exemplary maps. The patterns may be identified by an operator
or may be found by unsupervised data mining methods, which
have proven to be very effective in automatically grouping
wafermaps in the database [[19]]. Data sets PC1 and PC2 are
examples for a pattern-based grouping. A classification based
on patterns is an excellent guidance for our Feature Selection
approach, as it is highly improbable for a pattern to show up
by pure chance. In the data sets YC1 and YC2 we defined lots
to be conspicuous when a threshhold for the total error rate
was exceeded.

B. Feature ranking

The feature ranking, which we introduced in [[II-Al estab-
lishes a correlation between the grouping y and the process
histories x of the lots. In a representation as in Figure [3] we
plot the correlation scores between the occurrence of errors
and the use of machines for different processes. Note that we
only show the ten features which obtain the highest scores.

In both data sets, PC2 and YCI, all measures consistently
rank one feature far higher than any other (#288 and #2A5
respectively), indicating a large correlation with the defect.

On the PC2 data it is interesting to compare different
measures. The features #289 and #28A are ranked 2" and 3™
by FS and MI, while CMI finds them to be highly correlated
to the first feature #288. A closer look at the production chain
shows that all top three features belong to the same production
stage and represent the only machines to choose from in this
stage. They are strongly correlated as in this stage only one of
these machines can be used at a time. The same gap can be
observed in the PC1 data (Figure El]), where combination #404
is found to be completely uninformative if one knows whether
the lot has passed #675. CMI finds small sets of informative
features, ignoring redundant information such as feature #404.
As we use a combination of all ranking measures in our
plots, we obtain a good indicator for dependencies between
the features. Errors, which are caused by a coinciding use of
several machines, are found reliably by CMI as features are
considered jointly.

Data set PC2 represents a recent problem. Our maintenance
team could be directed to the identified production stage, in
which the machines #288, #289 and #28A were used (see
figure E]), and verified machine #289 to have caused the
error. YC1 is a historic data set where the cause had been
found beforehand in a time-consuming manual check. The
feature #2AS5, which was found by our ranking on only 11
conspicuous lots, correctly represents the machine known to
have caused the error.

C. Validation

Feature ranking alone can already give a prognosis on where
to find flaws in the production line. However, as we are dealing
with as many as 2000 features and as few as 11 flawed
lots, the results need to be validated to avoid over-fitting.
The validation, which we have described in Section [1I-B|
uses a cross validation scheme in which the SVM classifier
is trained on the selected features. Based on the predictions
for the independent test sets we calculate the score defined by
(T1).

For the two data sets PC2 and YCI1 the validation score
strongly affirms the ranking. On PC2 we obtain a good score
on the best feature #288 only. The score is as high as 90%
and thus confirms that most flaws can be explained by the
corresponding combination of machine and stage. In this
example machine #289 in the same stage produces the error,
and using feature #288 the SVM predicts flaws if the lot has
not passed machine #288. For the YC1 data we observe lower
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Fig. 4.  Ranking scores for data sets PC1 (left) and YC2 (right). For PC1
three features obtain relatively high FS and MI scores in comparison to the
rest, CMI finds the second feature to be completely dependent on the first. In
the YC2 data the ranking gives poor separation between the features.
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Fig. 6. Rating for data set YC2. Shown are the ratings using the FS and the
CMI filter. The univariate MI leads to results very similar to that of the FS,
the rating leads to a mean score of approximately 72% on the feature that is
ranked highest.

scores with high variance, as we only have 11 affected lots in
870 examples.

While the ranking shows only one prominent combination

in the above cases, the separation between the features is not
as clear for the other two data sets (see Figure [4).
Three features can be identified in PC1 to be strongly cor-
related to the error. The CMI measure finds #675 and #404
to be mutually redundant, while #3CF is independent of the
first two. The validation results in Figure [5] give more insight,
showing that the combinations #675 and #3CF together lead
to 87% of the maximal score. Therefore we are given high
evidence that the error is caused by a combination of the
machines behind the features #675 and #3CF, or #404 and
#3CF. We were able to validate this result with a manual check
in the shop floor.

On the YC2-data neither feature ranking nor validation
gives a clear picture. The maximal rating shows a relatively
low mean score of 72% (see Figure @) The data alone do
apparently not contain enough information to identify the
cause of the irregularity clearly in this example.

While the ranking provides a fast estimate for the impact of
the features, by training the SVM and testing its predictions in
the validation step, we can capture all possible interactions and
check how much of the grouping could really be understood.
Especially when we have just a small number of lots in the
database, we can only be sure of avoiding over-fitting if we
test predictions in a CV scheme: the feature ranking alone
might point to a wrong trace.

V. CONCLUSION

The aim of this work was to construct a procedure to
reliably locate dysfunctions in complex production lines based
on few observed irregular lots. The approach uses existing data
and can be used where we lack extra measurements that are
required by traditional statistical process control. In contrast to

previous works, which focus on single processes, our method
embraces the manufacturing chain as a whole and requires
only the lot history and final test results. We use four data
sets, which represent irregularities in the mass production of
semiconductor devices, to explain how we have applied the
method in practice and to assess its performance. Our data sets
include two examples where errors are reflected by patterns
on wafermaps. For such cases our method can be combined
with unsupervised pattern recognition to build an automatic
control mechanism on top of existing process control.

The proposed scheme uses different feature ranking methods
in combination with a validation based on SVM classification.
The univariate measures, FS and MI, rank the features inde-
pendently, and enable us to find correlations between single
entries in the lot history and the occurence of irregularities.
However, these simple measures cannot capture dependencies
between the features, and errors which are caused by the
interplay of several processes might not be detected. CMI is
constructed to take such interdependencies between features
into account. By combining all measures we can thus identify
dependencies between the features and locate errors which are
caused by a coaction of several processes. The SVM classifier,
which we use in a cross validation scheme to validate the
ranking, guarantees reliable results. We avoid the phenomenon
of over-fitting, often observed in setups with a small ratio of
observations and features, and therefore our method requires
only a small number of observations.

The results on our benchmark data sets show that the
proposed scheme is a powerful tool to complete the existing
process control in semiconductor manufacturing. We believe
that the results also hold for other serial-group assembly
lines, where the lot history is recorded in a database. The
proposed ranking and validation methods are relatively easy to
implement and give a fast overview on the impact of different
machines or stages.
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